Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2543, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514654

RESUMO

Accumulating evidence points to dysregulations of the Nucleus Accumbens (NAc) in eating disorders (ED), however its precise contribution to ED symptomatic dimensions remains unclear. Using chemogenetic manipulations in male mice, we found that activity of dopamine D1 receptor-expressing neurons of the NAc core subregion facilitated effort for a food reward as well as voluntary exercise, but decreased food intake, while D2-expressing neurons have opposite effects. These effects are congruent with D2-neurons being more active than D1-neurons during feeding while it is the opposite during running. Chronic manipulations of each subpopulations had limited effects on energy balance. However, repeated activation of D1-neurons combined with inhibition of D2-neurons biased behavior toward activity-related energy expenditure, whilst the opposite manipulations favored energy intake. Strikingly, concomitant activation of D1-neurons and inhibition of D2-neurons precipitated weight loss in anorexia models. These results suggest that dysregulations of NAc dopaminoceptive neurons might be at the core of EDs.


Assuntos
Núcleo Accumbens , Receptores de Dopamina D2 , Camundongos , Masculino , Animais , Núcleo Accumbens/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Neurônios/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Metabolismo Energético
2.
J Neurosci ; 44(11)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38286627

RESUMO

Dopamine neurons play crucial roles in pleasure, reward, memory, learning, and fine motor skills and their dysfunction is associated with various neuropsychiatric diseases. Dopamine receptors are the main target of treatment for neurologic and psychiatric disorders. Antipsychotics that antagonize the dopamine D2 receptor (DRD2) are used to alleviate the symptoms of these disorders but may also sometimes cause disabling side effects such as parkinsonism (catalepsy in rodents). Here we show that GPR143, a G-protein-coupled receptor for L-3,4-dihydroxyphenylalanine (L-DOPA), expressed in striatal cholinergic interneurons enhances the DRD2-mediated side effects of haloperidol, an antipsychotic agent. Haloperidol-induced catalepsy was attenuated in male Gpr143 gene-deficient (Gpr143-/y ) mice compared with wild-type (Wt) mice. Reducing the endogenous release of L-DOPA and preventing interactions between GPR143 and DRD2 suppressed the haloperidol-induced catalepsy in Wt mice but not Gpr143-/y mice. The phenotypic defect in Gpr143-/y mice was mimicked in cholinergic interneuron-specific Gpr143-/y (Chat-cre;Gpr143flox/y ) mice. Administration of haloperidol increased the phosphorylation of ribosomal protein S6 at Ser240/244 in the dorsolateral striatum of Wt mice but not Chat-cre;Gpr143flox/y mice. In Chinese hamster ovary cells stably expressing DRD2, co-expression of GPR143 increased cell surface expression level of DRD2, and L-DOPA application further enhanced the DRD2 surface expression. Shorter pauses in cholinergic interneuron firing activity were observed after intrastriatal stimulation in striatal slice preparations from Chat-cre;Gpr143flox/y mice compared with those from Wt mice. Together, these findings provide evidence that GPR143 regulates DRD2 function in cholinergic interneurons and may be involved in parkinsonism induced by antipsychotic drugs.


Assuntos
Antipsicóticos , Transtornos Parkinsonianos , Receptores de Neurotransmissores , Humanos , Camundongos , Masculino , Animais , Cricetinae , Haloperidol/farmacologia , Levodopa/efeitos adversos , Catalepsia/induzido quimicamente , Células CHO , Cricetulus , Antipsicóticos/efeitos adversos , Interneurônios/metabolismo , Colinérgicos/farmacologia , Proteínas do Olho/metabolismo , Glicoproteínas de Membrana/metabolismo
3.
Biol Psychiatry ; 95(2): 123-135, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37207936

RESUMO

BACKGROUND: Deficient social interactions are a hallmark of major neuropsychiatric disorders, and accumulating evidence points to altered social reward and motivation as key underlying mechanisms of these pathologies. In the present study, we further explored the role of the balance of activity between D1 and D2 receptor-expressing striatal projection neurons (D1R- and D2R-SPNs) in the control of social behavior, challenging the hypothesis that excessive D2R-SPN activity, rather than deficient D1R-SPN activity, compromises social behavior. METHODS: We selectively ablated D1R- and D2R-SPNs using an inducible diphtheria toxin receptor-mediated cell targeting strategy and assessed social behavior as well as repetitive/perseverative behavior, motor function, and anxiety levels. We tested the effects of optogenetic stimulation of D2R-SPNs in the nucleus accumbens (NAc) and pharmacological compounds repressing D2R-SPN. RESULTS: Targeted deletion of D1R-SPNs in the NAc blunted social behavior in mice, facilitated motor skill learning, and increased anxiety levels. These behaviors were normalized by pharmacological inhibition of D2R-SPN, which also repressed transcription in the efferent nucleus, the ventral pallidum. Ablation of D1R-SPNs in the dorsal striatum had no impact on social behavior but impaired motor skill learning and decreased anxiety levels. Deletion of D2R-SPNs in the NAc produced motor stereotypies but facilitated social behavior and impaired motor skill learning. We mimicked excessive D2R-SPN activity by optically stimulating D2R-SPNs in the NAc and observed a severe deficit in social interaction that was prevented by D2R-SPN pharmacological inhibition. CONCLUSIONS: Repressing D2R-SPN activity may represent a promising therapeutic strategy to relieve social deficits in neuropsychiatric disorders.


Assuntos
Neurônios , Núcleo Accumbens , Camundongos , Animais , Neurônios/fisiologia , Comportamento Social , Motivação , Aprendizagem , Receptores de Dopamina D1/metabolismo
4.
Nat Commun ; 14(1): 8481, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123574

RESUMO

The risk of developing drug addiction is strongly influenced by the epigenetic landscape and chromatin remodeling. While histone modifications such as methylation and acetylation have been studied in the ventral tegmental area and nucleus accumbens (NAc), the role of H2A monoubiquitination remains unknown. Our investigations, initially focused on the scaffold protein melanoma-associated antigen D1 (Maged1), reveal that H2A monoubiquitination in the paraventricular thalamus (PVT) significantly contributes to cocaine-adaptive behaviors and transcriptional repression induced by cocaine. Chronic cocaine use increases H2A monoubiquitination, regulated by Maged1 and its partner USP7. Accordingly, Maged1 specific inactivation in thalamic Vglut2 neurons, or USP7 inhibition, blocks cocaine-evoked H2A monoubiquitination and cocaine locomotor sensitization. Additionally, genetic variations in MAGED1 and USP7 are linked to altered susceptibility to cocaine addiction and cocaine-associated symptoms in humans. These findings unveil an epigenetic modification in a non-canonical reward pathway of the brain and a potent marker of epigenetic risk factors for drug addiction in humans.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Transtornos Relacionados ao Uso de Substâncias , Humanos , Peptidase 7 Específica de Ubiquitina/metabolismo , Cocaína/farmacologia , Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/genética , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Transtornos Relacionados ao Uso de Substâncias/genética , Epigênese Genética , Núcleo Accumbens/metabolismo , Tálamo/metabolismo
5.
Nat Commun ; 14(1): 4982, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591838

RESUMO

The basal ganglia are known to control actions and modulate movements. Neuronal activity in the two efferent pathways of the dorsal striatum is critical for appropriate behavioral control. Previous evidence has led to divergent conclusions on the respective engagement of both pathways during actions. Using calcium imaging to evaluate how neurons in the direct and indirect pathways encode behaviors during self-paced spontaneous explorations in an open field, we observed that the two striatal pathways exhibit distinct tuning properties. Supervised learning algorithms revealed that direct pathway neurons encode behaviors through their activation, whereas indirect pathway neurons exhibit behavior-specific silencing. These properties remain stable for weeks. Our findings highlight a complementary encoding of behaviors with congruent activations in the direct pathway encoding multiple accessible behaviors in a given context, and in the indirect pathway encoding the suppression of competing behaviors. This model reconciles previous conflicting conclusions on motor encoding in the striatum.


Assuntos
Gânglios da Base , Corpo Estriado , Neostriado , Controle Comportamental , Neurônios
6.
Nat Commun ; 14(1): 2284, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085502

RESUMO

Learned associations between environmental cues and the outcomes they predict (cue-outcome associations) play a major role in behavioral control, guiding not only which responses we should perform, but also which we should inhibit, in order to achieve a specific goal. The encoding of such cue-outcome associations, as well as the performance of cue-guided choice behavior, is thought to involve dopamine D1 and D2 receptor-expressing medium spiny neurons (D1-/D2-MSNs) of the nucleus accumbens (NAc). Here, using a visual discrimination task in male mice, we assessed the role of NAc D1-/D2-MSNs in cue-guided inhibition of inappropriate responding. Cell-type specific neuronal silencing and in-vivo imaging revealed NAc D2-MSNs to contribute to inhibiting behavioral responses, with activation of NAc D2-MSNs following response errors playing an important role in optimizing future choice behavior. Our findings indicate that error-signaling by NAc D2-MSNs contributes to the ability to use environmental cues to inhibit inappropriate behavior.


Assuntos
Núcleo Accumbens , Receptores de Dopamina D2 , Camundongos , Masculino , Animais , Núcleo Accumbens/metabolismo , Camundongos Transgênicos , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Neurônios/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Comportamento de Escolha , Camundongos Endogâmicos C57BL
7.
Science ; 375(6582): eabm4459, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35175798

RESUMO

The blood-brain barrier (BBB) protects the central nervous system (CNS) from harmful blood-borne factors. Although BBB dysfunction is a hallmark of several neurological disorders, therapies to restore BBB function are lacking. An attractive strategy is to repurpose developmental BBB regulators, such as Wnt7a, into BBB-protective agents. However, safe therapeutic use of Wnt ligands is complicated by their pleiotropic Frizzled signaling activities. Taking advantage of the Wnt7a/b-specific Gpr124/Reck co-receptor complex, we genetically engineered Wnt7a ligands into BBB-specific Wnt activators. In a "hit-and-run" adeno-associated virus-assisted CNS gene delivery setting, these new Gpr124/Reck-specific agonists protected BBB function, thereby mitigating glioblastoma expansion and ischemic stroke infarction. This work reveals that the signaling specificity of Wnt ligands is adjustable and defines a modality to treat CNS disorders by normalizing the BBB.


Assuntos
Barreira Hematoencefálica/fisiologia , Proteínas Ligadas por GPI/agonistas , Glioblastoma/terapia , Receptores Acoplados a Proteínas G/agonistas , Acidente Vascular Cerebral/terapia , Proteínas Wnt/genética , Via de Sinalização Wnt , Animais , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Receptores Frizzled/metabolismo , Glioblastoma/metabolismo , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese , Sistema Nervoso/embriologia , Engenharia de Proteínas , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Acidente Vascular Cerebral/metabolismo , Proteínas Wnt/química , Proteínas Wnt/metabolismo , Xenopus laevis , Peixe-Zebra
8.
Front Syst Neurosci ; 15: 711350, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335197

RESUMO

The ventral striatum, also called nucleus accumbens (NAc), has long been known to integrate information from cortical, thalamic, midbrain and limbic nuclei to mediate goal-directed behaviors. Until recently thalamic afferents have been overlooked when studying the functions and connectivity of the NAc. However, findings from recent studies have shed light on the importance and roles of precise Thalamus to NAc connections in motivated behaviors and in addiction. In this review, we summarize studies using techniques such as chemo- and optogenetics, electrophysiology and in vivo calcium imaging to elucidate the complex functioning of the thalamo-NAc afferents, with a particular highlight on the projections from the Paraventricular Thalamus (PVT) to the NAc. We will focus on the recent advances in the understanding of the roles of these neuronal connections in motivated behaviors, with a special emphasis on their implications in addiction, from cue-reward association to the mechanisms driving relapse.

9.
J Neurosci ; 41(37): 7831-7847, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34348999

RESUMO

The principal neurons of the striatum, the spiny projection neurons (SPNs), make inhibitory synaptic connections with each other via collaterals of their main axon, forming a local lateral inhibition network. Serotonin, acting via the 5-HT1B receptor, modulates neurotransmitter release from SPN terminals in striatal output nuclei, but the role of 5-HT1B receptors in lateral inhibition among SPNs in the striatum is unknown. Here, we report the effects of 5-HT1B receptor activation on lateral inhibition in the mouse striatum. Whole-cell recordings were made from SPNs in acute brain slices of either sex, while optogenetically activating presynaptic SPNs or fast-spiking interneurons (FSIs). Activation of 5-HT1B receptors significantly reduced the amplitude of IPSCs evoked by optical stimulation of both direct and indirect pathway SPNs. This reduction was blocked by application of a 5-HT1B receptor antagonist. Activation of 5-HT1B receptors did not reduce the amplitude of IPSCs evoked from FSIs. These results suggest a new role for serotonin as a modulator of lateral inhibition among striatal SPNs. The 5-HT1B receptor may, therefore, be a suitable target for future behavioral experiments investigating the currently unknown role of lateral inhibition in the function of the striatum.SIGNIFICANCE STATEMENT We show that stimulation of serotonin receptors reduces the efficacy of lateral inhibition between spiny projection neurons (SPNs), one of the biggest GABAergic sources in the striatum, by activation of the serotonin 5-HT1B receptor. The striatum receives serotonergic input from the dorsal raphe nuclei and is important in behavioral brain functions like learning and action selection. Our findings suggest a new role for serotonin in modulating the dynamics of neural interactions in the striatum, which extends current knowledge of the mechanisms of the behavioral effects of serotonin.


Assuntos
Corpo Estriado/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptor 5-HT1B de Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Corpo Estriado/metabolismo , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Camundongos , Neurônios/metabolismo , Técnicas de Patch-Clamp , Serotonina/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
10.
Eur Neuropsychopharmacol ; 49: 23-37, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33780705

RESUMO

The specific role of the striatum, especially its dorsolateral (DLS) and dorsomedial (DMS) parts, in male copulatory behavior is still debated. In order to clarify their contribution to male sexual behavior, we specifically ablated the major striatal neuronal subpopulations, direct and indirect medium spiny neurons (dMSNs and iMSNs) in DMS or DLS, and dMSNs, iMSNs and cholinergic interneurons in nucleus accumbens (NAc), The main results of this study can be summarized as follows: In DMS, dMSN ablation causes a reduction in the percent of mice that mount a receptive female, and a complex alteration in the parameters of the copulatory performance, that is largely opposite to the alterations induced by iMSN ablation. In DLS, dMSN ablation causes a widespread alteration in the copulatory behavior parameters, that tends to disappear at repetition of the test; iMSN ablation induces minor copulatory behavior alterations that are complementary to those observed after dMSN ablation. In NAc, dMSN ablation causes a marked reduction in the percent of mice that mount a receptive female and a disruption of copulatory behavior, while iMSN ablation induces minor copulatory behavior alterations that are opposite to those observed with dMSN ablation, and cholinergic neuron ablation induces a selective decrease in mount latency. Overall, present data point to a complex region and cell-specific contribution to copulatory behavior of the different neuronal subpopulations of both dorsal and ventral striatum, with a prominent role of the dMSNs of the different subregions.


Assuntos
Corpo Estriado , Estriado Ventral , Animais , Feminino , Interneurônios , Masculino , Camundongos , Neostriado , Neurônios
11.
Addict Biol ; 26(4): e12995, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33368923

RESUMO

Prescription stimulants, such as d-amphetamine or methylphenidate are used to treat suffering from attention-deficit hyperactivity disorder (ADHD). They potently release dopamine (DA) and norepinephrine (NE) and cause phosphorylation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA1 in the striatum. Whether other brain regions are also affected remains elusive. Here, we demonstrate that d-amphetamine and methylphenidate increase phosphorylation at Ser845 (pS845-GluA1) in the membrane fraction of mouse cerebellum homogenate. We identify Bergmann glial cells as the source of pS845-GluA1 and demonstrate a requirement for intact NE release. Consequently, d-amphetamine-induced pS845-GluA1 was prevented by ß1-adenoreceptor antagonist, whereas the blockade of DA D1 receptor had no effect. Together, these results indicate that NE regulates GluA1 phosphorylation in Bergmann glial cells in response to prescription stimulants.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Cerebelo/metabolismo , Dextroanfetamina/farmacologia , Metilfenidato/farmacologia , Fosfotransferases , Animais , Masculino , Camundongos , Norepinefrina/metabolismo , Fosforilação , Receptores de Dopamina D1/metabolismo
12.
Biol Psychiatry ; 88(12): 945-954, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32711953

RESUMO

BACKGROUND: As an integrator of molecular pathways, mTOR (mammalian target of rapamycin) has been associated with diseases including neurodevelopmental, psychiatric, and neurodegenerative disorders such as autism spectrum disorder, schizophrenia, and Huntington's disease. An important brain area involved in all these diseases is the striatum. However, the mechanisms behind how mTOR is involved in striatal physiology and its relative role in distinct neuronal populations in these striatal-related diseases still remain to be clarified. METHODS: Using Drd1-Cre mTOR-conditional knockout male mice, we combined behavioral, biochemical, electrophysiological, and morphological analysis aiming to untangle the role of mTOR in direct pathway striatal projection neurons and how this would impact on striatal physiology. RESULTS: Our results indicate deep behavioral changes in absence of mTOR in Drd1-expressing neurons such as decreased spontaneous locomotion, impaired social interaction, and decreased marble-burying behavior. These alterations were accompanied by a Kv1.1-induced increase in the fast phase of afterhyperpolarization and coincident decreased distal spine density in striatal direct pathway striatal projection neurons. The physiological changes were mechanistically independent of protein synthesis but sensitive to pharmacological blockade of transforming protein RhoA activity. CONCLUSIONS: These results identify mTOR signaling as an important regulator of striatal functions through an intricate mechanism involving RhoA and culminating in Kv1.1 overfunction, which could be targeted to treat striatal-related monogenic disorders associated with the mTOR signaling pathway.


Assuntos
Transtorno do Espectro Autista , Sirolimo , Animais , Corpo Estriado/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
13.
Neuropharmacology ; 168: 107923, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31874169

RESUMO

The olfactory tubercle (OT), an important nucleus in processing sensory information, has been reported to change cortical activity under odor. However, little is known about the physiological role and mechanism of the OT in sleep-wake regulation. The OT expresses abundant adenosine A2A receptors (A2ARs), which are important in sleep regulation. Therefore, we hypothesized that the OT regulates sleep via A2ARs. This study examined sleep-wake profiles through electroencephalography and electromyography recordings with pharmacological and chemogenetic manipulations in freely moving rodents. Compared with their controls, activation of OT A2ARs pharmacologically and OT A2AR neurons via chemogenetics increased non-rapid eye movement sleep for 5 and 3 h, respectively, while blockade of A2ARs decreased non-rapid eye movement sleep. Tracing and electrophysiological studies showed OT A2AR neurons projected to the ventral pallidum and lateral hypothalamus, forming inhibitory innervations. Together, these findings indicate that A2ARs in the OT play an important role in sleep regulation.


Assuntos
Agonistas do Receptor A2 de Adenosina/farmacologia , Tubérculo Olfatório/metabolismo , Receptor A2A de Adenosina/metabolismo , Sono/fisiologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Animais , Eletroencefalografia/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tubérculo Olfatório/efeitos dos fármacos , Fenetilaminas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor A2A de Adenosina/genética , Roedores , Sono/efeitos dos fármacos
14.
J Neurosci ; 39(38): 7513-7528, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31363062

RESUMO

The regulation of the striatum by the GPCR signaling through neuromodulators is essential for its physiology and physiopathology, so it is necessary to know all the compounds of these pathways. In this study, we identified a new important partner of the dopaminergic pathway: GPRIN3 (a member of the GPRIN family). GPRIN3 is highly expressed in the striatum but with undefined function. Cell sorting of medium spiny neurons (MSNs) in indirect MSNs and direct MSNs indicated the presence of the GPRIN3 gene in both populations with a preferential expression in indirect MSNs. This led us to generate GPRIN3 KO mice by CRISPR/Cas9 and test male animals to access possible alterations in morphological, electrophysiological, and behavioral parameters following its absence. 3D reconstruction analysis of MSNs revealed increased neuronal arborization in GPRIN3 KO and modified passive and active electrophysiological properties. These cellular alterations were coupled with increased motivation and cocaine-induced hyperlocomotion. Additionally, using a specific indirect MSN knockdown, we showed a preferential role for GPRIN3 in indirect MSNs related to the D2R signaling. Together, these results show that GPRIN3 is a mediator of D2R function in the striatum playing a major role in striatal physiology.SIGNIFICANCE STATEMENT The striatum is the main input of the basal ganglia processing information from different brain regions through the combined actions of direct pathway neurons and indirect pathway neurons. Both neuronal populations are defined by the expression of dopamine D1R or D2R GPCRs, respectively. How these neurons signal to the respective G-protein is still debatable. Here we identified GPRIN3 as a putative selective controller of D2R function in the striatum playing a critical role in striatal-associated behaviors and cellular functions. This study represents the identification of a new target to tackle striatal dysfunction associated with the D2R, such as schizophrenia, Parkinson's disease, and drug addiction.


Assuntos
Corpo Estriado/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Masculino , Camundongos , Camundongos Knockout , Transdução de Sinais/fisiologia
15.
Neurochem Int ; 124: 200-214, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30659871

RESUMO

The striatum as the main entry nucleus of the basal ganglia is long known to be critical for motor control. It integrates information from multiple cortical areas, thalamic and midbrain nuclei to refine and control motion. By tackling this incredible variety of input signals, increasing evidences showed a pivotal role, particularly of the dorsal striatum, in executive functions. The complexity of the dorsal striatum (DS) in its compartmentalization and in the nature and origin of its afferent connections, makes it a critical hub controlling dynamics of motor learning and behavioral or cognitive flexibility. The present review summarizes findings from recent studies that utilize optogenetics with complementary technologies including electrophysiology, activity imaging and tracing methods in rodents to elucidate the functioning and role of discrete regions and specific pathways of the DS in behavioral flexibility, with an emphasis on the processes leading to initial action sequence or serial order learning and reversal learning.


Assuntos
Corpo Estriado/química , Corpo Estriado/fisiologia , Locomoção/fisiologia , Reversão de Aprendizagem/fisiologia , Animais , Humanos , Vias Neurais/química , Vias Neurais/fisiologia , Optogenética/métodos
16.
Nat Commun ; 9(1): 4118, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297767

RESUMO

Dopamine modulates striatal synaptic plasticity, a key substrate for action selection and procedural learning. Thus, characterizing the repertoire of activity-dependent plasticity in striatum and its dependence on dopamine is of crucial importance. We recently unraveled a striatal spike-timing-dependent long-term potentiation (tLTP) mediated by endocannabinoids (eCBs) and induced with few spikes (~5-15). Whether this eCB-tLTP interacts with the dopaminergic system remains to be investigated. Here, we report that eCB-tLTP is impaired in a rodent model of Parkinson's disease and rescued by L-DOPA. Dopamine controls eCB-tLTP via dopamine type-2 receptors (D2R) located presynaptically in cortical terminals. Dopamine-endocannabinoid interactions via D2R are required for the emergence of tLTP in response to few coincident pre- and post-synaptic spikes and control eCB-plasticity by modulating the long-term potentiation (LTP)/depression (LTD) thresholds. While usually considered as a depressing synaptic function, our results show that eCBs in the presence of dopamine constitute a versatile system underlying bidirectional plasticity implicated in basal ganglia pathophysiology.


Assuntos
Dopamina/metabolismo , Endocanabinoides/metabolismo , Potenciação de Longa Duração/fisiologia , Neostriado/fisiologia , Potenciais de Ação/fisiologia , Animais , Antiparkinsonianos/farmacologia , Modelos Animais de Doenças , Levodopa/farmacologia , Depressão Sináptica de Longo Prazo/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neostriado/citologia , Neostriado/metabolismo , Doença de Parkinson/fisiopatologia , Doença de Parkinson/prevenção & controle , Ratos Sprague-Dawley , Receptores de Dopamina D2/metabolismo
17.
EMBO Rep ; 19(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30002119

RESUMO

Melanoma antigen genes (Mage) were first described as tumour markers. However, some of Mage are also expressed in healthy cells where their functions remain poorly understood. Here, we describe an unexpected role for one of these genes, Maged1, in the control of behaviours related to drug addiction. Mice lacking Maged1 are insensitive to the behavioural effects of cocaine as assessed by locomotor sensitization, conditioned place preference (CPP) and drug self-administration. Electrophysiological experiments in brain slices and conditional knockout mice demonstrate that Maged1 is critical for cortico-accumbal neurotransmission. Further, expression of Maged1 in the prefrontal cortex (PFC) and the amygdala, but not in dopaminergic or striatal and other GABAergic neurons, is necessary for cocaine-mediated behavioural sensitization, and its expression in the PFC is also required for cocaine-induced extracellular dopamine (DA) release in the nucleus accumbens (NAc). This work identifies Maged1 as a critical molecule involved in cellular processes and behaviours related to addiction.


Assuntos
Comportamento Aditivo/genética , Transtornos Relacionados ao Uso de Cocaína/genética , Cocaína/farmacologia , Proteínas de Neoplasias/fisiologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/fisiologia , Animais , Cocaína/administração & dosagem , Dependovirus , Dopamina/metabolismo , Deleção de Genes , Ácido Glutâmico/metabolismo , Locomoção/efeitos dos fármacos , Locomoção/genética , Masculino , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Neurônios/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Reforço Psicológico , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia
18.
Neuropharmacology ; 138: 315-330, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29908240

RESUMO

Serotonin (5-HT) neurons are involved in wake promotion and exert a strong inhibitory influence on rapid eye movement (REM) sleep. Such effects have been ascribed, at least in part to the action of 5-HT at post-synaptic 5-HT1A receptors (5-HT1AR) in the brainstem, a major wake/REM sleep regulatory center. However, the neuroanatomical substrate through which 5-HT1AR influence sleep remains elusive. We therefore investigated whether a brainstem structure containing a high density of 5-HT1AR mRNA, the GABAergic Gudden's dorsal tegmental nucleus (DTg), may contribute to 5-HT-mediated regulatory mechanisms of sleep-wake stages. We first found that bilateral lesions of the DTg promote wake at the expense of sleep. In addition, using local microinjections into the DTg in freely moving mice, we showed that local activation of 5-HT1AR by the prototypical agonist 8-OH-DPAT enhances wake and reduces deeply REM sleep duration. The specific involvement of 5-HT1AR in the latter effects was further demonstrated by ex vivo extracellular recordings showing that the selective 5-HT1AR antagonist WAY 100635 prevented DTg neuron inhibition by 8-OH-DPAT. We next found that GABAergic neurons of the ventral DTg exclusively targets glutamatergic neurons of the lateral mammillary nucleus (LM) in the posterior hypothalamus by means of anterograde and retrograde tracing techniques using cre driver mouse lines and a modified rabies virus. Altogether, our findings strongly support the idea that 5-HT-driven enhancement of wake results from 5-HT1AR-mediated inhibition of DTg GABAergic neurons that would in turn disinhibit glutamatergic neurons in the mammillary bodies. We therefore propose a Raphe→DTg→LM pathway as a novel regulatory circuit underlying 5-HT modulation of arousal.


Assuntos
Tronco Encefálico/metabolismo , Neurônios GABAérgicos/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Serotonina/metabolismo , Sono/fisiologia , Vigília/fisiologia , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Animais , Tronco Encefálico/citologia , Tronco Encefálico/efeitos dos fármacos , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Hipotálamo/citologia , Hipotálamo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/citologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Piperazinas/farmacologia , Piridinas/farmacologia , RNA Mensageiro/metabolismo , Serotoninérgicos/farmacologia , Sono/efeitos dos fármacos , Técnicas de Cultura de Tecidos , Vigília/efeitos dos fármacos
19.
Nat Commun ; 8(1): 734, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28963505

RESUMO

Sleep control is ascribed to a two-process model, a widely accepted concept that posits homoeostatic drive and a circadian process as the major sleep-regulating factors. Cognitive and emotional factors also influence sleep-wake behaviour; however, the precise circuit mechanisms underlying their effects on sleep control are unknown. Previous studies suggest that adenosine has a role affecting behavioural arousal in the nucleus accumbens (NAc), a brain area critical for reinforcement and reward. Here, we show that chemogenetic or optogenetic activation of excitatory adenosine A2A receptor-expressing indirect pathway neurons in the core region of the NAc strongly induces slow-wave sleep. Chemogenetic inhibition of the NAc indirect pathway neurons prevents the sleep induction, but does not affect the homoeostatic sleep rebound. In addition, motivational stimuli inhibit the activity of ventral pallidum-projecting NAc indirect pathway neurons and suppress sleep. Our findings reveal a prominent contribution of this indirect pathway to sleep control associated with motivation.In addition to circadian and homoeostatic drives, motivational levels influence sleep-wake cycles. Here the authors demonstrate that adenosine receptor-expressing neurons in the nucleus accumbens core that project to the ventral pallidum are inhibited by motivational stimuli and are causally involved in the control of slow-wave sleep.


Assuntos
Núcleo Accumbens/fisiologia , Sono/fisiologia , Animais , Ritmo Circadiano , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Motivação , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptor A2A de Adenosina/fisiologia
20.
Curr Biol ; 27(19): 3042-3048.e4, 2017 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-28966085

RESUMO

The ventral striatum (VS) is a key brain center regulating reward-oriented behavior [1-4]. The VS can be anatomically divided into medial (VMS) and lateral (VLS) portions based on cortical input patterns. The VMS receives inputs from medial pallium-originated limbic structures (e.g., the medial prefrontal cortex [mPFC]), and the VLS receives inputs from the lateral pallium-originated areas (e.g., the insula) [5, 6]. This anatomical feature led us to hypothesize a functional segregation within the VS in terms of the regulation of reward-oriented behavior. Here, we engineered a fiber photometry system [4] and monitored population-level Ca2+ activities of dopamine D2-receptor-expressing medium spiny neurons (D2-MSNs), one of the major cell types in the striatum, during a food-seeking discrimination task. We found that VLS D2-MSNs were activated at the time of cue presentation. In stark contrast, VMS D2-MSNs were inhibited at this time point. Optogenetic counteraction of those changes in the VLS and VMS impaired action initiation and increased responding toward non-rewarded cues, respectively. During lever-press reversal training, VMS inhibition at the time of cue presentation temporarily ceased and optogenetic activation of VMS D2-MSNs facilitated acquisition of the new contingency. These data indicate that the opposing inhibition and excitation in VMS and VLS are important for selecting and initiating a proper action in a reward-oriented behavior. We propose distinct subregional roles within the VS in the execution of successful reward-oriented behavior.


Assuntos
Discriminação Psicológica , Preferências Alimentares , Neuritos/fisiologia , Recompensa , Estriado Ventral/fisiologia , Animais , Sinais (Psicologia) , Camundongos , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...